首页 >> 生活 >

斐波那契数列的通项求法(斐波那契数列通项公式)

2023-10-10 14:00:32 来源: 用户: 

大家好,小百来为大家解答以上的问题。斐波那契数列的通项求法,斐波那契数列通项公式这个很多人还不知道,现在让我们一起来看看吧!

1、斐波拉契数列的通项公式之推导由an+2= an+1+an有an+2- an+1- an=0构造特征方程 x2-x-1=0,令它的两个根是p,q 有pq=-1 p+q=1下面我们来证 {an+1-pan}是以q为公比的等比数列。

2、为了推导的方便,令a0=1,仍满足an+2= an+1+anan+1-pan= an+an-1 -pan= (1-p) an-pqan-1=q(an-pan-1)所以:{an+1-pan}是以q为公比的等比数列。

3、a1-pa0=1-p=q所以 an+1-pan=q*qn=qn+1 ①同理 an+1-qan=p*pn=pn+1 ②①-②:(q-p)an= qn+1-pn因p=(1-√5)/2,q=(1+√5)/2,q-p=√5,所以 an=(1/√5){[(1+√5)/2]n+1-[(1-√5)/2] n+1} 可验证a0,a1也适合以上通项公式。

4、顺便指出,上述方法也可用于推导形如 an+2= Aan+1+Ban (A,B是常数)的数列的通项公式。

5、相应的特征方程是 x2-Ax-B=0.****************************************************************当a1=1,a2=1,a3=2,a4=3,……an+2= an+1+an{ an}就是著名的斐波拉契数列,通常用{F(n)}表示F(n)= (1/√5){[(1+√5)/2]n-[(1-√5)/2] n}它的前n项的和Sn=F(n+2)-1另外,lim[F(n)/F(n+1)]= [√5-1]/2 (当n趋于无穷时)。

本文到此分享完毕,希望对大家有所帮助。

  免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!

 
分享:
最新文章